本文解决了视频检测问题的视频监视问题。由于异常事件的固有稀有性和异质性,该问题被视为一种正态建模策略,在这种策略中,我们的模型学习以对象为中心的正常模式,而无需在训练过程中看到异常样本。主要贡献在于耦合预处理的对象级动作具有基于余弦的异常估计功能的原型原型,因此通过向基于主流重建的策略引入其他约束来扩展以前的方法。我们的框架利用外观和运动信息来学习对象级别的行为并捕获内存模块中的原型模式。在几个知名数据集上进行的实验证明了我们方法的有效性,因为它在最相关的时空评估指标上优于当前的最新时间。
translated by 谷歌翻译
检测人类相互作用对于人类行为分析至关重要。已经提出了许多方法来处理人对物体交互(HOI)检测,即检测人和物体在一起和分类交互类型的图像中检测。然而,人类对人类的相互作用,例如社会和暴力互动,通常不会在可用的会议训练数据集中考虑。由于我们认为这些类型的互动在分析人类行为时,我们不能从海内忽略和去相关,我们提出了一个新的互动数据集来处理两种类型的人类相互作用:人对人类或对象(H2O)。此外,我们介绍了一个新的动词分类,旨在更接近人体态度与周围的相互作用目标的描述,更加独立于环境。与某些现有数据集不同,我们努力避免在高度取决于目标类型时定义同义词,或者需要高水平的语义解释。由于H2O数据集包括使用此新分类系统注释的V-Coco映像,图像显然包含更多的交互。这可能是HOI检测方法的问题,其复杂性取决于人数,目标或交互的数量。因此,我们提出了空灵博(通过仅寻找一次),一种有效的主题的单射方法,用于检测一个向前通过的所有交互,恒定的推断时间与图像内容无关。此外,此多任务网络同时检测所有人员和对象。我们展示了如何为这些任务共享网络不仅可以节省计算资源,而且还可通过协作提高性能。最后,Diabolo是一种强大的基线,用于H2O交互检测的新挑战,因为它在Hoi DataSet V-Coco上训练和评估时表现出所有最先进的方法。
translated by 谷歌翻译
伪标签的使用占上处,以解决无监督的域自适应(UDA)重新识别(RE-ID),具有最佳性能。事实上,这家族的方法已经上升到几个有效的UDA重新ID特定框架。在这些作品中,改善伪标签UDA重新ID性能的研究方向多样化,主要基于直觉和实验:炼制伪标签,减少伪标签中的错误的影响......它可能很难推断出来它们是一般的良好做法,可以以任何伪标记方法实施,以始终如一地提高其性能。为了解决这一关键问题,提出了一个关于伪标签UDA RE-ID的新的理论视图。这些贡献是三倍:(i)伪标签UDA重新ID的新理论框架,通过UDA重新ID性能的新一般学习上限,正式化。 (ii)伪标签的一般良好做法,直接推导出拟议的理论框架的解释,以改善目标重新ID表现。 (iii)关于具有挑战性的人和车辆交叉数据集重新ID任务的广泛实验,对各种最先进的方法和各种建议的良好实践实现显示了一致的性能改进。
translated by 谷歌翻译
未经监督的域适应(UDA)用于重新识别(RE-ID)是一个具有挑战性的任务:避免昂贵的附加数据的注释,它旨在将知识从域转移到仅具有未标记数据的域的带注释数据。已证明伪标签方法已对UDA重新ID有效。然而,这些方法的有效性大量取决于通过聚类影响影响伪标签的一些超参数(HP)的选择。兴趣领域缺乏注释使得这一选择是非微不足道的。目前的方法只需重复使用所有适应任务的相同的经验值,并且无论通过伪标记培训阶段都会改变的目标数据表示。由于这种简单的选择可能会限制其性能,我们的目标是解决这个问题。我们提出了对聚类UDA RE-ID进行培训选择的新理论基础以及伪标签UDA聚类的自动和循环HP调谐方法:丘比巴。 Hyprass在伪标记方法中包含两个模块:(i)基于标记源验证集的HP选择和(ii)特征歧视的条件域对齐,以改善基于源样本的HP选择。关于常用的人员重新ID和车辆重新ID数据集的实验表明,与常用的经验HP设置相比,我们所提出的次数始终如一地提高RE-ID中最先进的方法。
translated by 谷歌翻译
在本文中,我们考虑了多任务表示(MTR)的框架学习的目标是使用源任务来学习降低求解目标任务的样本复杂性的表示形式。我们首先回顾MTR理论的最新进展,并表明它们可以在此框架内进行分析时为流行的元学习算法提供新颖的见解。特别是,我们重点介绍了实践中基于梯度和基于度量的算法之间的根本差异,并提出了理论分析来解释它。最后,我们使用派生的见解来通过新的基于光谱的正则化项来提高元学习方法的性能,并通过对少量分类基准的实验研究确认其效率。据我们所知,这是将MTR理论的最新学习范围付诸实践的第一项贡献,以实现几乎没有射击分类的任务。
translated by 谷歌翻译
我们解决了一个新的新兴问题,该问题正在加权图中找到最佳的单核匹配。\ cite {adma}在每次迭代中采样完整匹配的半频带版本,创建了一个算法,预期的遗憾匹配$ o(\ frac {l \ log(l)} {\ delta {\ delta} \ log(t))$带$ 2L $播放器,$ t $迭代和最小奖励差距$ \ delta $。我们分两个步骤减少了这一界限。首先,如\ cite {grab}和\ cite {unirank},我们在适当的图上使用预期奖励的无模式属性来设计算法,并遗憾地在$ o(l \ frac {1} {\ delta} {\ delta} \ \log(t))$。其次,我们表明,通过将焦点转移到主要问题`\ emph {用户$ i $比用户$ j $更好?}'这个遗憾变成$ O(l \ frac {\ delta}}^2} \ log(t))$,其中$ \ tilde {\ delta}> \ delta $源自比较用户的更好方法。一些实验结果最终表明这些理论结果在实践中得到了证实。
translated by 谷歌翻译
我们解决了一个新的新兴问题,该问题正在加权图中找到最佳的单核匹配。\ cite {adma}在每次迭代中采样完整匹配的半频带版本,创建了一个算法,预期的遗憾匹配$ o(\ frac {l \ log(l)} {\ delta {\ delta} \ log(t))$带$ 2L $播放器,$ t $迭代和最小奖励差距$ \ delta $。我们分两个步骤减少了这一界限。首先,如\ cite {grab}和\ cite {unirank},我们在适当的图上使用预期奖励的无模式属性来设计算法,并遗憾地在$ o(l \ frac {1} {\ delta} {\ delta} \ \log(t))$。其次,我们表明,通过将焦点转移到主要问题`\ emph {用户$ i $比用户$ j $更好?}'这个遗憾变成$ O(l \ frac {\ delta}}^2} \ log(t))$,其中$ \ tilde {\ delta}> \ delta $源自比较用户的更好方法。一些实验结果最终表明这些理论结果在实践中得到了证实。
translated by 谷歌翻译
局部性的好处是石灰的主要前提之一,这是解释黑盒机器学习模型的最突出方法之一。这种强调依赖于一个假设,即我们在本地观察实例附近的越多,黑框模型变得越简单,并且我们可以用线性替代物模拟它越准确。尽管如此,我们的发现似乎是合乎逻辑的,表明,借助石灰的当前设计,当解释过于本地时,即当带宽参数$ \ sigma $趋于零时,替代模型可能会退化。基于此观察,本文的贡献是双重的。首先,我们研究带宽和培训附近对石灰解释的忠诚度和语义的影响。其次,基于我们的发现,我们提出了\史莱姆,这是一种调和忠诚度和位置的石灰的扩展。
translated by 谷歌翻译